mathpi.net

Adjoint Matrix Calculator

Adjoint Matrix Calculator takes matrix as input and finds its adjoint matrix, with detailed step by step calculations.

Enter Matrix Size (m × m)

×

square matrix of m rows and m columns

Enter matrix A

How to use Adjoint Matrix Calculator?

1. Find the Adjoint matrix of the following matrix A.

\( A = \begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\9 & 8 & 7\end{bmatrix} \)

Solution

Since the given matrix is of size 3×3, follow these steps with the Adjoint Matrix Calculator.

  1. Enter value of 3 in input fields: m=3 and n=3.
  2. A matrix with specified size of 3×3 appears, with input field for each element in the matrix.
  3. Enter the given matrix values, and click on Calculate button.
  4. A step-by-step solution with the following steps will be displayed.

Given:

Matrix \( A = \begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{bmatrix} \)

To find the Adjoint Matrix, we shall first compute Cofactor Matrix, and then Transpose it.

Computing Cofactor Matrix

The formula to find the cofactor of each element \(a_{ij}\) in matrix A, where \(a_{ij}\) is the element at ith row, and jth column is

Cofactor of \(a_{ij} = (-1)^{i+j}\cdot det(minor(a_{ij}))\)

where

  • \(minor(a_{ij})\) is the minor matrix of element \(a_{ij}\)
  • \(det(minor(a_{ij}))\) is the determinant of minor matrix of element \(a_{ij}\)

Cofactors of elements in row 1

Cofactor of \(a_{11} = (-1)^{1+1}\cdot |minor(a_{11})|\) \( = (-1)^{2}\cdot \begin{vmatrix}5 & 6\\8 & 9\end{vmatrix} \)\( = -3 \)

Cofactor of \(a_{12} = (-1)^{1+2}\cdot |minor(a_{12})|\) \( = (-1)^{3}\cdot \begin{vmatrix}4 & 6\\7 & 9\end{vmatrix} \)\( = 6 \)

Cofactor of \(a_{13} = (-1)^{1+3}\cdot |minor(a_{13})|\) \( = (-1)^{4}\cdot \begin{vmatrix}4 & 5\\7 & 8\end{vmatrix} \)\( = -3 \)

Cofactors of elements in row 2

Cofactor of \(a_{21} = (-1)^{2+1}\cdot |minor(a_{21})|\) \( = (-1)^{3}\cdot \begin{vmatrix}2 & 3\\8 & 9\end{vmatrix} \)\( = 6 \)

Cofactor of \(a_{22} = (-1)^{2+2}\cdot |minor(a_{22})|\) \( = (-1)^{4}\cdot \begin{vmatrix}1 & 3\\7 & 9\end{vmatrix} \)\( = -12 \)

Cofactor of \(a_{23} = (-1)^{2+3}\cdot |minor(a_{23})|\) \( = (-1)^{5}\cdot \begin{vmatrix}1 & 2\\7 & 8\end{vmatrix} \)\( = 6 \)

Cofactors of elements in row 3

Cofactor of \(a_{31} = (-1)^{3+1}\cdot |minor(a_{31})|\) \( = (-1)^{4}\cdot \begin{vmatrix}2 & 3\\5 & 6\end{vmatrix} \)\( = -3 \)

Cofactor of \(a_{32} = (-1)^{3+2}\cdot |minor(a_{32})|\) \( = (-1)^{5}\cdot \begin{vmatrix}1 & 3\\4 & 6\end{vmatrix} \)\( = 6 \)

Cofactor of \(a_{33} = (-1)^{3+3}\cdot |minor(a_{33})|\) \( = (-1)^{6}\cdot \begin{vmatrix}1 & 2\\4 & 5\end{vmatrix} \)\( = -3 \)

Consolidate all the cofactors computed for elements in the matrix A to get the Cofactor Matrix of A.

Cofactor Matrix of A \( = \begin{bmatrix}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{bmatrix} \)

Transpose Cofactor Matrix

Transform rows to columns,

Adjoint Matrix of A \( = \begin{bmatrix}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{bmatrix} ^T\)

\( = \begin{bmatrix}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{bmatrix} \)

Result

Therefore, the adjoint matrix of given matrix A, is

Adjoint Matrix of \( A = \begin{bmatrix}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{bmatrix} \)

2. Find the Adjoint matrix of the following matrix A.

\( A = \begin{bmatrix}1 & 2\\3 & 4\end{bmatrix} \)

Solution

Since the given matrix is of size 2×2, follow these steps with the Adjoint Matrix Calculator.

  1. Enter value of 2 in input fields: m=2 and n=2.
  2. A matrix with specified size of 2×2 appears, with input field for each element in the matrix.
  3. Enter the given matrix values, and click on Calculate button.
  4. A step-by-step solution with the following steps will be displayed.

Given:

Matrix \( A = \begin{bmatrix}1 & 2\\3 & 4\end{bmatrix} \)

To find the Adjoint Matrix, we shall first compute Cofactor Matrix, and then Transpose it.

Computing Cofactor Matrix

The formula to find the cofactor of each element \(a_{ij}\) in matrix A, where \(a_{ij}\) is the element at ith row, and jth column is

Cofactor of \(a_{ij} = (-1)^{i+j}\cdot det(minor(a_{ij}))\)

where

  • \(minor(a_{ij})\) is the minor matrix of element \(a_{ij}\)
  • \(det(minor(a_{ij}))\) is the determinant of minor matrix of element \(a_{ij}\)

Cofactors of elements in row 1

Cofactor of \(a_{11} = (-1)^{1+1}\cdot |minor(a_{11})|\) \( = (-1)^{2}\cdot \begin{vmatrix}4\end{vmatrix} \)\( = 4 \)

Cofactor of \(a_{12} = (-1)^{1+2}\cdot |minor(a_{12})|\) \( = (-1)^{3}\cdot \begin{vmatrix}3\end{vmatrix} \)\( = -3 \)

Cofactors of elements in row 2

Cofactor of \(a_{21} = (-1)^{2+1}\cdot |minor(a_{21})|\) \( = (-1)^{3}\cdot \begin{vmatrix}2\end{vmatrix} \)\( = -2 \)

Cofactor of \(a_{22} = (-1)^{2+2}\cdot |minor(a_{22})|\) \( = (-1)^{4}\cdot \begin{vmatrix}1\end{vmatrix} \)\( = 1 \)

Consolidate all the cofactors computed for elements in the matrix A to get the Cofactor Matrix of A.

Cofactor Matrix of A \( = \begin{bmatrix}4 & -3\\-2 & 1\end{bmatrix} \)

Transpose Cofactor Matrix

Transform rows to columns,

Adjoint Matrix of A \( = \begin{bmatrix}4 & -3\\-2 & 1\end{bmatrix} ^T\)

\( = \begin{bmatrix}4 & -2\\-3 & 1\end{bmatrix} \)

Result

Therefore, the adjoint matrix of given matrix A, is

Adjoint Matrix of \( A = \begin{bmatrix}4 & -2\\-3 & 1\end{bmatrix} \)